Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Yeast thioredoxin reductase Trr1p controls TORC1-regulated processes.

Identifieur interne : 000427 ( Main/Exploration ); précédent : 000426; suivant : 000428

Yeast thioredoxin reductase Trr1p controls TORC1-regulated processes.

Auteurs : Cecilia Picazo [Espagne] ; Emilia Matallana [Espagne] ; Agustín Aranda [Espagne]

Source :

RBID : pubmed:30405153

Descripteurs français

English descriptors

Abstract

The thioredoxin system plays a predominant role in the control of cellular redox status. Thioredoxin reductase fuels the system with reducing power in the form of NADPH. The TORC1 complex promotes growth and protein synthesis when nutrients, particularly amino acids, are abundant. It also represses catabolic processes, like autophagy, which are activated during starvation. We analyzed the impact of yeast cytosolic thioredoxin reductase TRR1 deletion under different environmental conditions. It shortens chronological life span and reduces growth in grape juice fermentation. TRR1 deletion has a global impact on metabolism during fermentation. As expected, it reduces oxidative stress tolerance, but a compensatory response is triggered, with catalase and glutathione increasing. Unexpectedly, TRR1 deletion causes sensitivity to the inhibitors of the TORC1 pathway, such as rapamycin. This correlates with low Tor2p kinase levels and indicates a direct role of Trr1p in its stability. Markers of TORC1 activity, however, suggest increased TORC1 activity. The autophagy caused by nitrogen starvation is reduced in the trr1Δ mutant. Ribosomal protein Rsp6p is dephosphorylated in the presence of rapamycin. This dephosphorylation diminishes in the TRR1 deletion strain. These results show a complex network of interactions between thioredoxin reductase Trr1p and the processes controlled by TOR.

DOI: 10.1038/s41598-018-34908-4
PubMed: 30405153
PubMed Central: PMC6220292


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Yeast thioredoxin reductase Trr1p controls TORC1-regulated processes.</title>
<author>
<name sortKey="Picazo, Cecilia" sort="Picazo, Cecilia" uniqKey="Picazo C" first="Cecilia" last="Picazo">Cecilia Picazo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute for Integrative Systems Biology, I2SysBio, University of Valencia-CSIC, Valencia, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Institute for Integrative Systems Biology, I2SysBio, University of Valencia-CSIC, Valencia</wicri:regionArea>
<wicri:noRegion>Valencia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Matallana, Emilia" sort="Matallana, Emilia" uniqKey="Matallana E" first="Emilia" last="Matallana">Emilia Matallana</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute for Integrative Systems Biology, I2SysBio, University of Valencia-CSIC, Valencia, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Institute for Integrative Systems Biology, I2SysBio, University of Valencia-CSIC, Valencia</wicri:regionArea>
<wicri:noRegion>Valencia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Aranda, Agustin" sort="Aranda, Agustin" uniqKey="Aranda A" first="Agustín" last="Aranda">Agustín Aranda</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute for Integrative Systems Biology, I2SysBio, University of Valencia-CSIC, Valencia, Spain. agustin.aranda@csic.es.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Institute for Integrative Systems Biology, I2SysBio, University of Valencia-CSIC, Valencia</wicri:regionArea>
<wicri:noRegion>Valencia</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30405153</idno>
<idno type="pmid">30405153</idno>
<idno type="doi">10.1038/s41598-018-34908-4</idno>
<idno type="pmc">PMC6220292</idno>
<idno type="wicri:Area/Main/Corpus">000410</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000410</idno>
<idno type="wicri:Area/Main/Curation">000410</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000410</idno>
<idno type="wicri:Area/Main/Exploration">000410</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Yeast thioredoxin reductase Trr1p controls TORC1-regulated processes.</title>
<author>
<name sortKey="Picazo, Cecilia" sort="Picazo, Cecilia" uniqKey="Picazo C" first="Cecilia" last="Picazo">Cecilia Picazo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute for Integrative Systems Biology, I2SysBio, University of Valencia-CSIC, Valencia, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Institute for Integrative Systems Biology, I2SysBio, University of Valencia-CSIC, Valencia</wicri:regionArea>
<wicri:noRegion>Valencia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Matallana, Emilia" sort="Matallana, Emilia" uniqKey="Matallana E" first="Emilia" last="Matallana">Emilia Matallana</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute for Integrative Systems Biology, I2SysBio, University of Valencia-CSIC, Valencia, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Institute for Integrative Systems Biology, I2SysBio, University of Valencia-CSIC, Valencia</wicri:regionArea>
<wicri:noRegion>Valencia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Aranda, Agustin" sort="Aranda, Agustin" uniqKey="Aranda A" first="Agustín" last="Aranda">Agustín Aranda</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute for Integrative Systems Biology, I2SysBio, University of Valencia-CSIC, Valencia, Spain. agustin.aranda@csic.es.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Institute for Integrative Systems Biology, I2SysBio, University of Valencia-CSIC, Valencia</wicri:regionArea>
<wicri:noRegion>Valencia</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Scientific reports</title>
<idno type="eISSN">2045-2322</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acids (metabolism)</term>
<term>Antioxidants (metabolism)</term>
<term>Gene Deletion (MeSH)</term>
<term>Mechanistic Target of Rapamycin Complex 1 (metabolism)</term>
<term>Signal Transduction (MeSH)</term>
<term>Thioredoxin Reductase 1 (genetics)</term>
<term>Thioredoxin Reductase 1 (metabolism)</term>
<term>Yeasts (genetics)</term>
<term>Yeasts (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acides aminés (métabolisme)</term>
<term>Antioxydants (métabolisme)</term>
<term>Complexe-1 cible mécanistique de la rapamycine (métabolisme)</term>
<term>Délétion de gène (MeSH)</term>
<term>Levures (génétique)</term>
<term>Levures (métabolisme)</term>
<term>Thioredoxin reductase 1 (génétique)</term>
<term>Thioredoxin reductase 1 (métabolisme)</term>
<term>Transduction du signal (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Thioredoxin Reductase 1</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Amino Acids</term>
<term>Antioxidants</term>
<term>Mechanistic Target of Rapamycin Complex 1</term>
<term>Thioredoxin Reductase 1</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Yeasts</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Levures</term>
<term>Thioredoxin reductase 1</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Yeasts</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acides aminés</term>
<term>Antioxydants</term>
<term>Complexe-1 cible mécanistique de la rapamycine</term>
<term>Levures</term>
<term>Thioredoxin reductase 1</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Deletion</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Délétion de gène</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The thioredoxin system plays a predominant role in the control of cellular redox status. Thioredoxin reductase fuels the system with reducing power in the form of NADPH. The TORC1 complex promotes growth and protein synthesis when nutrients, particularly amino acids, are abundant. It also represses catabolic processes, like autophagy, which are activated during starvation. We analyzed the impact of yeast cytosolic thioredoxin reductase TRR1 deletion under different environmental conditions. It shortens chronological life span and reduces growth in grape juice fermentation. TRR1 deletion has a global impact on metabolism during fermentation. As expected, it reduces oxidative stress tolerance, but a compensatory response is triggered, with catalase and glutathione increasing. Unexpectedly, TRR1 deletion causes sensitivity to the inhibitors of the TORC1 pathway, such as rapamycin. This correlates with low Tor2p kinase levels and indicates a direct role of Trr1p in its stability. Markers of TORC1 activity, however, suggest increased TORC1 activity. The autophagy caused by nitrogen starvation is reduced in the trr1Δ mutant. Ribosomal protein Rsp6p is dephosphorylated in the presence of rapamycin. This dephosphorylation diminishes in the TRR1 deletion strain. These results show a complex network of interactions between thioredoxin reductase Trr1p and the processes controlled by TOR.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30405153</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>10</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>11</Month>
<Day>07</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2045-2322</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2018</Year>
<Month>11</Month>
<Day>07</Day>
</PubDate>
</JournalIssue>
<Title>Scientific reports</Title>
<ISOAbbreviation>Sci Rep</ISOAbbreviation>
</Journal>
<ArticleTitle>Yeast thioredoxin reductase Trr1p controls TORC1-regulated processes.</ArticleTitle>
<Pagination>
<MedlinePgn>16500</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/s41598-018-34908-4</ELocationID>
<Abstract>
<AbstractText>The thioredoxin system plays a predominant role in the control of cellular redox status. Thioredoxin reductase fuels the system with reducing power in the form of NADPH. The TORC1 complex promotes growth and protein synthesis when nutrients, particularly amino acids, are abundant. It also represses catabolic processes, like autophagy, which are activated during starvation. We analyzed the impact of yeast cytosolic thioredoxin reductase TRR1 deletion under different environmental conditions. It shortens chronological life span and reduces growth in grape juice fermentation. TRR1 deletion has a global impact on metabolism during fermentation. As expected, it reduces oxidative stress tolerance, but a compensatory response is triggered, with catalase and glutathione increasing. Unexpectedly, TRR1 deletion causes sensitivity to the inhibitors of the TORC1 pathway, such as rapamycin. This correlates with low Tor2p kinase levels and indicates a direct role of Trr1p in its stability. Markers of TORC1 activity, however, suggest increased TORC1 activity. The autophagy caused by nitrogen starvation is reduced in the trr1Δ mutant. Ribosomal protein Rsp6p is dephosphorylated in the presence of rapamycin. This dephosphorylation diminishes in the TRR1 deletion strain. These results show a complex network of interactions between thioredoxin reductase Trr1p and the processes controlled by TOR.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Picazo</LastName>
<ForeName>Cecilia</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Institute for Integrative Systems Biology, I2SysBio, University of Valencia-CSIC, Valencia, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Matallana</LastName>
<ForeName>Emilia</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Institute for Integrative Systems Biology, I2SysBio, University of Valencia-CSIC, Valencia, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Aranda</LastName>
<ForeName>Agustín</ForeName>
<Initials>A</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0003-3320-7326</Identifier>
<AffiliationInfo>
<Affiliation>Institute for Integrative Systems Biology, I2SysBio, University of Valencia-CSIC, Valencia, Spain. agustin.aranda@csic.es.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>11</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Sci Rep</MedlineTA>
<NlmUniqueID>101563288</NlmUniqueID>
<ISSNLinking>2045-2322</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000596">Amino Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000975">Antioxidants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.1.9</RegistryNumber>
<NameOfSubstance UI="D054481">Thioredoxin Reductase 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000076222">Mechanistic Target of Rapamycin Complex 1</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000596" MajorTopicYN="N">Amino Acids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000975" MajorTopicYN="N">Antioxidants</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017353" MajorTopicYN="N">Gene Deletion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076222" MajorTopicYN="N">Mechanistic Target of Rapamycin Complex 1</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054481" MajorTopicYN="N">Thioredoxin Reductase 1</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015003" MajorTopicYN="N">Yeasts</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>06</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>10</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>11</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>11</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>10</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30405153</ArticleId>
<ArticleId IdType="doi">10.1038/s41598-018-34908-4</ArticleId>
<ArticleId IdType="pii">10.1038/s41598-018-34908-4</ArticleId>
<ArticleId IdType="pmc">PMC6220292</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Antioxid Redox Signal. 2013 May 1;18(13):1699-711</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23198979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1995 Jan;11(1):53-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7762301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Feb 06;10(2):e0117267</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25658705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1997 Aug;13(10):903-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9271106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1972 Feb;45(2):510-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5060605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gerontol. 1956 Jul;11(3):298-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13332224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Discov. 2016 Mar 08;2:15049</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27462445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2003 Dec;4(3):339-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14654439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 May 14;99(10):6784-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11997479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lett Appl Microbiol. 2017 Feb;64(2):103-110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27714822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2016 Aug 12;36(17):2300-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27325672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2012 Apr;190(4):1157-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22209905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Res. 2004 Mar;38(3):225-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15129730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2003 Dec;20(16):1369-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14663829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Genomics. 2000 Aug 09;3(2):83-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11015603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Aug 24;107(34):15123-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20696905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2012 Jul 27;47(2):242-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22727621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2002;350:87-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12073338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Apr 2;279(14):14440-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14715653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Mar 13;10(3):e0120250</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25767889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2008 May 15;412(1):73-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18271751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1980 Jul 15;106(1):207-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7416462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Cell Fact. 2012 Jan 09;11:4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22230188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Subcell Biochem. 2012;57:13-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22094416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Feb 13;273(7):3963-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9461583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mech Ageing Dev. 2012 May;133(5):348-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22738658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2000 Jul 11;252(1-2):127-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10903444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 May 27;280(21):20558-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15772072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2011 Sep;1(4):263-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22384338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2012 Apr 13;46(1):105-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22424774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Cell Fact. 2012 Aug 08;11:104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22873488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2005;59:407-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16153175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1998 Dec 30;253(3):893-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9918826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2012 May;94(3):773-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22223102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2013 Feb 05;2:e00306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23390587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Nov;1780(11):1217-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18178164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Jul 25;418(6896):387-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12140549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1996 Jul 1;24(13):2519-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8692690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2012 Mar;36(2):306-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21658086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Sep 30;105(39):15166-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18812505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2017 Jan 1;17(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27956494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2014 Aug;14(5):683-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24738657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2012 Jul 3;16(1):18-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22768836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2000 Mar 1;28(5):659-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10754260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Nov 24;275(47):37011-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10973982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2014 Mar;38(2):254-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24483210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Jul 22;111(29):10586-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25002487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2008 Jul;69(1):277-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18513215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2003 Apr;2(2):73-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12882320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1998 Jul;14(10):953-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9717241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Biochem. 2010 Jan 14;11:3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20074363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2012 Apr;78(8):2748-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22327582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Sep 23;9(9):e108123</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25247923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1996 May 24;271(21):12275-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8647826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Cell Fact. 2010 Feb 12;9:9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20152017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2016 Jan 15;27(2):397-409</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26582391</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Espagne</li>
</country>
</list>
<tree>
<country name="Espagne">
<noRegion>
<name sortKey="Picazo, Cecilia" sort="Picazo, Cecilia" uniqKey="Picazo C" first="Cecilia" last="Picazo">Cecilia Picazo</name>
</noRegion>
<name sortKey="Aranda, Agustin" sort="Aranda, Agustin" uniqKey="Aranda A" first="Agustín" last="Aranda">Agustín Aranda</name>
<name sortKey="Matallana, Emilia" sort="Matallana, Emilia" uniqKey="Matallana E" first="Emilia" last="Matallana">Emilia Matallana</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000427 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000427 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30405153
   |texte=   Yeast thioredoxin reductase Trr1p controls TORC1-regulated processes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30405153" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020